635/Elc.

22-23 / 51717

B.Sc. Semester-V Examination, 2022-23 ELECTRONICS [Honours]

Course ID: 51717 Course Code: SH/ELC/504/DSE-2(T)

Course Title: Transmission Lines, Antenna and Wave Propagation

Time: 1 Hour 15 Minutes Full Marks: 25

The figures in the right-hand margin indicate marks.

Candidates are required to give their answers in their own words as far as practicable.

1. Answer any three of the following questions:

 $1 \times 3 = 3$

- a) In transmission lines, propagation co-efficient $P = \alpha + j\beta$ i.e., P is complex but α and β are real. What are the definitions of α and β ?
- b) What are the various secondary line co-efficients in transmission lines?
- c) What are the differences between low frequency and high frequency transmission lines?
- d) Give one practical example for LFT (Low Frequency Transmission) lines.
- e) What is critical frequency for propagation of radio-waves through ionosphere?
- f) What is Secant Law?

2. Answer any **three** of the following questions:

 $2 \times 3 = 6$

- a) What is Ionosphere? Why is it formed at a certain height in the earth's atmosphere (60km-400km)? 1+1=2
- b) What is "Skip Distance" in connection with radio-wave propagation? How is it related with Maximum Usable Frequency (MUF)? 1+1=2
- c) What is the function of "Duplex Circuit" in RADAR system?
- d) Give the expression for Z_0 (characteristic impedance) and P (Propagation co-efficient) in terms of primary line constants R, L, C and G.

What is ducting and duct propagation? How the radio-waves are propagated through the ducts? 1+1=2

- f) What is radio horizon? Explain with a rough sketch. 1+1=2
- 3. Answer any **two** of the following questions:

 $5 \times 2 = 10$

 Describe briefly the mechanism of reflection of EM waves through Ionosphere.

- b) Derive an expression for RADAR range equation for a pulse RADAR system.
- c) Derive an expression for the input impedance Z_i of any high-frequency transmission lines in terms of primary and secondary line constants.
- d) Find the expression for Voltage and Current at any point X for an infinitely large, finite length transmission line which is terminated with an impedance $Z_{\mathbb{R}}$.
- 4. Answer any **one** of the following questions:

$$6 \times 1 = 6$$

- a) Derive the necessary working formula to show how the refractive index (μ) of any ionospheric layer is related with free electron concentration (N) of the layer.
- b) What is wave guide? From Maxwell's 2nd and 4th equations $\left[\vec{\nabla} \times \vec{E} = -\mu \frac{\partial \vec{H}}{\partial t} \right]$ and $\vec{\nabla} \times \vec{H} = g\vec{E} + k \frac{\partial \vec{E}}{\partial t}$, obtain six field equations in rectangular co-ordinate system, where \vec{E} being the electric field in Y-axis and \vec{H} is the magnetic field along Z-axis.

c) Explain briefly how an ionospheric layer or Chapman layer is formed at a particular height above the earth surface (60 km – 400 km). How this ionospheric layer behaves during day and night? Define Scale Height (H). 2+3+1=6
